Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 539
Filtrar
2.
Sci Rep ; 14(1): 9032, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641704

RESUMO

CSF1R is a receptor tyrosine kinase responsible for the growth/survival/polarization of macrophages and overexpressed in some AML patients. We hypothesized that a novel multi-kinase inhibitor (TKi), narazaciclib (HX301/ON123300), with high potency against CSF1R (IC50 ~ 0.285 nM), would have anti-AML effects. We tested this by confirming HX301's high potency against CSF1R (IC50 ~ 0.285 nM), as well as other kinases, e.g. FLT3 (IC50 of ~ 19.77 nM) and CDK6 (0.53 nM). An in vitro proliferation assay showed that narazaciclib has a high growth inhibitory effect in cell cultures where CSF1R or mutant FLT3-ITD variants that may be proliferation drivers, including primary macrophages (IC50 of 72.5 nM) and a subset of AML lines (IC50 < 1.5 µM). In vivo pharmacology modeling of narazaciclib using five AML xenografts resulted in: inhibition of MV4-11 (FLT3-ITD) subcutaneous tumor growth and complete suppression of AM7577-PDX (FLT3-ITD/CSF1Rmed) systemic growth, likely due to the suppression of FLT3-ITD activity; complete suppression of AM8096-PDX (CSF1Rhi/wild-type FLT3) growth, likely due to the inhibition of CSF1R ("a putative driver"); and nonresponse of both AM5512-PDX and AM7407-PDX (wild-type FLT3/CSF1Rlo). Significant leukemia load reductions in bone marrow, where disease originated, were also achieved in both responders (AM7577/AM8096), implicating that HX301 might be a potentially more effective therapy than those only affecting peripheral leukemic cells. Altogether, narazaciclib can potentially be a candidate treatment for a subset of AML with CSF1Rhi and/or mutant FLT3-ITD variants, particularly second generation FLT3 inhibitor resistant variants.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/patologia , Receptores Proteína Tirosina Quinases , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Fator Estimulador de Colônias , Tirosina Quinase 3 Semelhante a fms/genética , Linhagem Celular Tumoral , Mutação , Apoptose , Quinase 6 Dependente de Ciclina
3.
Phytomedicine ; 128: 155366, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38537445

RESUMO

BACKGROUND: Yinhua Miyanling tablets (YMT), comprising 10 Chinese medicinal compounds, is a proprietary Chinese medicine used in the clinical treatment of urinary tract infections. Medicinal compounds, extracts, or certain monomeric components in YMT all show good effect on ulcerative colitis (UC). However, no evidence supporting YMT as a whole prescription for UC treatment is available. PURPOSE: To evaluate the anti-UC activity of YMT and elucidate the underlying mechanisms. The objective of the study was to provide evidence for the add-on development of YMT to treat UC. METHODS: First, YMT's protective effect on the intestinal barrier was evaluated using a lipopolysaccharide (LPS)-induced Caco-2 intestinal injury model. Second, the UC mouse model was established using dextran sodium sulfate (DSS) to determine YMT's influence on symptoms, inflammatory factors, intestinal barrier, and histopathological changes in the colon. Third, an integrated method combining metabolomics and network pharmacology was employed to screen core targets and key metabolic pathways with crucial roles in YMT's therapeutic effect on UC. Molecular docking was employed to identify the key targets with high affinity. Finally, western blotting was performed to validate the mechanism of YMT action against UC. RESULTS: YMT enhanced the transepithelial electrical resistance value and improved the expression of proteins of the tight junctions dose-dependently in LPS-induced Caco-2 cells. UC mice treated with YMT exhibited alleviated pathological lesions of the colon tissue in the in vivo pharmacodynamic experiments. The colonic lengths tended to be normal, and the levels of inflammatory factors (TNF-α, IL-6, and iNOS) along with those of the core enzymes (MPO, MDA, and SOD) improved. YMT effectively ameliorated DSS-induced colonic mucosal injury; pathological changes along with ultrastructure damage were significantly alleviated (evidenced by a relatively intact colon tissue, recovery of epithelial damage, repaired gland, reduced infiltration of inflammatory cells and epithelial cells arranged closely with dense microvilli). Seven key targets (IL-6, TNF-α, MPO, COX-2, HK2, TPH, and CYP1A2) and four key metabolic pathways (arachidonic acid metabolism, linoleate metabolism, glycolysis, and gluconeogenesis and tyrosine biosynthesis) were identified to play vital roles in the treatment on UC using YMT. CONCLUSIONS: YMT exerts beneficial therapeutic effects on UC by regulating multiple endogenous metabolites, targets, and metabolic pathways, suggestive of its potential novel application in UC treatment.

4.
Sci Rep ; 14(1): 6529, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499711

RESUMO

Heart transplantation is the gold standard for treating patients with advanced heart failure. Although improvements in immunosuppressive therapies have significantly reduced the frequency of cardiac graft rejection, the incidences of T cell-mediated rejection (TCMR) and antibody-mediated rejection remain almost unchanged. A four-archetype analysis (4AA) model, developed by Philip F. Halloran, illustrated this problem well. It provided a new dimension to improve the accuracy of diagnoses and an independent system for recalibrating the histology guidelines. However, this model was based on the invasive method of endocardial biopsy, which undoubtedly increased the postoperative risk of heart transplant patients. Currently, little is known regarding the associated genes and specific functions of the different phenotypes. We performed bioinformatics analysis (using machine-learning methods and the WGCNA algorithm) to screen for hub-specific genes related to different phenotypes, based Gene Expression Omnibus accession number GSE124897. More immune cell infiltration was observed with the ABMR, TCMR, and injury phenotypes than with the stable phenotype. Hub-specific genes for each of the four archetypes were verified successfully using an external test set (accession number GSE2596). Logistic-regression models based on TCMR-specific hub genes and common hub genes were constructed with accurate diagnostic utility (area under the curve > 0.95). RELA, NFKB1, and SOX14 were identified as transcription factors important for TCMR/injury phenotypes and common genes, respectively. Additionally, 11 Food and Drug Administration-approved drugs were chosen from the DrugBank Database for each four-archetype model. Tyrosine kinase inhibitors may be a promising new option for transplant rejection treatment. KRAS signaling in cardiac transplant rejection is worth further investigation. Our results showed that heart transplant rejection subtypes can be accurately diagnosed by detecting expression of the corresponding specific genes, thereby enabling precise treatment or medication.


Assuntos
Transplante de Coração , Transplante de Rim , Humanos , Transplante de Coração/efeitos adversos , Rejeição de Enxerto , Transplante de Rim/métodos , Medicina de Precisão , Doadores de Tecidos , Biópsia , Biologia Computacional , Fatores de Transcrição SOXB2
5.
J Transl Med ; 22(1): 297, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38515161

RESUMO

BACKGROUND: The aberrant secretion and excessive deposition of type I collagen (Col1) are important factors in the pathogenesis of myocardial fibrosis in dilated cardiomyopathy (DCM). However, the precise molecular mechanisms underlying the synthesis and secretion of Col1 remain unclear. METHODS AND RESULTS: RNA-sequencing analysis revealed an increased HtrA serine peptidase 1 (HTRA1) expression in patients with DCM, which is strongly correlated with myocardial fibrosis. Consistent findings were observed in both human and mouse tissues by immunoblotting, quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry, and immunofluorescence analyses. Pearson's analysis showed a markedly positive correlation between HTRA1 level and myocardial fibrosis indicators, including extracellular volume fraction (ECV), native T1, and late gadolinium enhancement (LGE), in patients with DCM. In vitro experiments showed that the suppression of HTRA1 inhibited the conversion of cardiac fibroblasts into myofibroblasts and decreased Col1 secretion. Further investigations identified the role of HTRA1 in promoting the formation of endoplasmic reticulum (ER) exit sites, which facilitated the transportation of Col1 from the ER to the Golgi apparatus, thereby increasing its secretion. Conversely, HTRA1 knockdown impeded the retention of Col1 in the ER, triggering ER stress and subsequent induction of ER autophagy to degrade misfolded Col1 and maintain ER homeostasis. In vivo experiments using adeno-associated virus-serotype 9-shHTRA1-green fluorescent protein (AAV9-shHTRA1-GFP) showed that HTRA1 knockdown effectively suppressed myocardial fibrosis and improved left ventricular function in mice with DCM. CONCLUSIONS: The findings of this study provide valuable insights regarding the treatment of DCM-associated myocardial fibrosis and highlight the therapeutic potential of targeting HTRA1-mediated collagen secretion.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Animais , Humanos , Camundongos , Colágeno Tipo I , Meios de Contraste , Fibrose , Gadolínio , Miocárdio/patologia
6.
Drug Des Devel Ther ; 18: 639-650, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476203

RESUMO

Background: Norepinephrine has fewer negative effects on heart rate (HR) and cardiac output (CO) for treating postspinal hypotension (PSH) compared with phenylephrine during cesarean section. However, it remains unclear whether fetuses from patients with severe pre-eclampsia could benefit from the superiority of CO. The objective of this study was to compare the safety and efficacy of intermittent intravenous boluses of phenylephrine and norepinephrine used in equipotent doses for treating postspinal hypotension in patients with severe pre-eclampsia during cesarean section. Methods: A total of 80 patients with severe pre-eclampsia who developed PSH predelivery during cesarean section were included. Eligible patients were randomized at a 1:1 ratio to receive either phenylephrine or norepinephrine for treating PSH. The primary outcome was umbilical arterial pH. Secondary outcomes included other umbilical cord blood gas values, Apgar scores at 1 and 5 min, changes in hemodynamic parameters including CO, mean arterial pressure (MAP), HR, stroke volume (SV), and systemic vascular resistance (SVR), the number of vasopressor boluses required, and the incidence of bradycardia, hypertension, nausea, vomiting, and dizziness. Results: No significant difference was observed in umbilical arterial pH between the phenylephrine and norepinephrine groups (7.303±0.38 vs 7.303±0.44, respectively; P=0.978). Compared with the phenylephrine group, the overall CO (P=0.009) and HR (P=0.015) were greater in the norepinephrine group. The median [IQR] total number of vasopressor boluses required was comparable between the two groups (2 [1 to 3] and 2 [1 to 3], respectively; P=0.942). No significant difference was found in Apgar scores or the incidence of maternal complications between groups. Conclusion: A 60 µg bolus of phenylephrine and a 4.5 µg bolus of norepinephrine showed similar neonatal outcomes assessed by umbilical arterial pH and were equally effective when treating PSH during cesarean section in patients with severe pre-eclampsia. Norepinephrine provided a higher maternal CO and a lower incidence of bradycardia.


Assuntos
Raquianestesia , Cesárea , Hipotensão , Pré-Eclâmpsia , Feminino , Humanos , Recém-Nascido , Gravidez , Raquianestesia/efeitos adversos , Bradicardia/induzido quimicamente , Método Duplo-Cego , Hipotensão/tratamento farmacológico , Norepinefrina , Fenilefrina , Pré-Eclâmpsia/tratamento farmacológico , Vasoconstritores
7.
J Agric Food Chem ; 72(13): 7074-7088, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38525502

RESUMO

Acute kidney injury (AKI) is a common, multicause clinical condition that, if ignored, often progresses to chronic kidney disease (CKD) and end-stage kidney disease, with a mortality rate of 40-50%. However, there is a lack of universal treatment for AKI. Inflammation is the basic pathological change of early kidney injury, and inflammation can exacerbate AKI. Macrophages are the primary immune cells involved in the inflammatory microenvironment of kidney disease. Therefore, regulating the function of macrophages is a crucial breakthrough for the AKI intervention. Our team chemically modified pyxinol, an ocotillol-type ginsenoside, to prepare PJ16 with higher solubility and bioavailability. In vitro, using a model of macrophages stimulated by LPS, it was found that PJ16 could regulate macrophage function, including inhibiting the secretion of inflammatory factors, promoting phagocytosis, inhibiting M1 macrophages, and promoting M1 transition to the M2c macrophage. Further investigation revealed that PJ16 may shield renal tubular epithelial cells (HK-2) damaged by LPS in vitro. Based on this, PJ16 was validated in the animal model of unilateral ureteral obstruction, which showed that it improves renal function and inhibits renal tissue fibrosis by decreasing inflammatory responses, reducing macrophage inflammatory infiltration, and preferentially upregulating M2c macrophages. In conclusion, our study is the first to show that PJ16 resists AKI and fibrosis by mechanistically regulating macrophage function by modulating the phenotypic transition from M1 to M2 macrophages, mainly M2c macrophages.


Assuntos
Injúria Renal Aguda , Lipopolissacarídeos , Animais , Lipopolissacarídeos/efeitos adversos , Rim/patologia , Injúria Renal Aguda/tratamento farmacológico , Macrófagos , Inflamação/patologia , Fibrose
8.
Anesth Analg ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446701
9.
J Colloid Interface Sci ; 662: 119-128, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340511

RESUMO

Aqueous sodium-ion batteries (ASIBs) have garnered considerable attention for large-scale energy storage because of inherent safety and the Na abundance. Nonetheless, the solidification of aqueous electrolytes under sub-zero conditions results in diminished ionic conductivity and increased viscosity, hindering the electrochemical performance and versatility of ASIBs. Herein, we introduce a novel freeze-tolerant ASIB using antifreezing ethylene glycol-polyacrylamide-sodium perchlorate hydrogel electrolyte, paired with new couple of Na3MnTi(PO4)3 cathode and Fe-based anode. The addition of ethylene glycol in the electrolyte enhances ionic conductivity at cold temperatures and optimizes electrode capacity by reduced hydrogen bonding within the water molecules and a decline in free water activity. The pronounced interaction between ethylene glycol and water, combined with the cooperative effect of the crosslinked polyacrylamide network, enables the hydrogel electrolyte to effectively suppress water solidification and maintain better water-retaining capability, achieving remarkable mechanical extensibility and good ionic conductivity (2.5 mS cm-1) at - 40 °C. Consequently, the ASIB equipped with hydrogel electrolyte delivers high energy density of 43.6 Wh kg-1 and retains 64 % at - 30 °C. Furthermore, the flexible ASIB demonstrates robust mechanical durability when bent or compressed, efficiently powering electronic devices even at - 30 °C. Our findings will pave the way for advancing low-temperature ASIBs with hydrogel-based electrolytes.

10.
Sensors (Basel) ; 24(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38400225

RESUMO

A high-quality dataset is a basic requirement to ensure the training quality and prediction accuracy of a deep learning network model (DLNM). To explore the influence of label image accuracy on the performance of a concrete crack segmentation network model in a semantic segmentation dataset, this study uses three labelling strategies, namely pixel-level fine labelling, outer contour widening labelling and topological structure widening labelling, respectively, to generate crack label images and construct three sets of crack semantic segmentation datasets with different accuracy. Four semantic segmentation network models (SSNMs), U-Net, High-Resolution Net (HRNet)V2, Pyramid Scene Parsing Network (PSPNet) and DeepLabV3+, were used for learning and training. The results show that the datasets constructed from the crack label images with pix-el-level fine labelling are more conducive to improving the accuracy of the network model for crack image segmentation. The U-Net had the best performance among the four SSNMs. The Mean Intersection over Union (MIoU), Mean Pixel Accuracy (MPA) and Accuracy reached 85.47%, 90.86% and 98.66%, respectively. The average difference between the quantized width of the crack image segmentation obtained by U-Net and the real crack width was 0.734 pixels, the maximum difference was 1.997 pixels, and the minimum difference was 0.141 pixels. Therefore, to improve the segmentation accuracy of crack images, the pixel-level fine labelling strategy and U-Net are the best choices.

11.
Drug Discov Today ; 29(3): 103906, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309689

RESUMO

Antimetastatic agents are highly desirable for cancer treatment because of the severe medical challenges and high mortality resulting from tumor metastasis. Having demonstrated antimetastatic effects in numerous in vitro and in vivo studies, migration inhibitors present significant opportunities for developing a new class of anticancer drugs. To provide a useful overview on the latest research in migration inhibitors, this article first discusses their therapeutic significance, targetable proteins, and developmental avenues. Subsequently it reviews over 20 representative migration inhibitors reported in recent journals in terms of their inhibitory mechanism, potency, and potential clinical utility. The relevance of the target proteins to cellular migratory function is focused on as it is crucial for assessing the overall efficacy of the inhibitors.


Assuntos
Antineoplásicos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Movimento Celular , Metástase Neoplásica/tratamento farmacológico , Linhagem Celular Tumoral
13.
Angew Chem Int Ed Engl ; 63(9): e202316772, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38204294

RESUMO

Renewable electricity driven electrocatalytic CO2 reduction reaction (CO2 RR) is a promising solution to carbon neutralization, which mainly generate simple carbon products. It is of great importance to produce more valuable C-N chemicals from CO2 and nitrogen species. However, it is challenging to co-reduce CO2 and NO3 - /NO2 - to generate aldoxime an important intermediate in the electrocatalytic C-N coupling process. Herein, we report the successful electrochemical conversion of CO2 and NO2 - to acetamide for the first time over copper catalysts under alkaline condition through a gas diffusion electrode. Operando spectroelectrochemical characterizations and DFT calculations, suggest acetaldehyde and hydroxylamine identified as key intermediates undergo a nucleophilic addition reaction to produce acetaldoxime, which is then dehydrated to acetonitrile and followed by hydrolysis to give acetamide under highly local alkaline environment and electric field. Moreover, the above mechanism was successfully extended to the formation of phenylacetamide. This study provides a new strategy to synthesize highly valued amides from CO2 and wastewater.

14.
Int J Nanomedicine ; 19: 347-366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38229705

RESUMO

Introduction: Excessive generation of reactive oxygen species (ROS) following myocardial ischemia-reperfusion (I/R) can result in additional death of myocardial cells. The rapid clearance of ROS after reperfusion injury and intervention during subsequent cardiac repair stages are crucial for the ultimate recovery of cardiac function. Methods: Magnesium-doped mesoporous bioactive glasses were prepared and loaded with the antioxidant drug gallic acid into MgNPs by sol-gel method. The antioxidant effects of MgNPs/GA were tested for their pro-angiogenic and anti-inflammatory effects based on the release characteristics of GA and Mg2+ from MgNPs/GA. Later, we confirmed in our in vivo tests through immunofluorescence staining of tissue sections at various time points that MgNPs/GA exhibited initial antioxidant effects and had both pro-angiogenic and anti-inflammatory effects during the cardiac repair phase. Finally, we evaluated the cardiac function in mice treated with MgNPs/GA. Results: We provide evidence that GA released by MgNPs/GA can effectively eliminate ROS in the early stage, decreasing myocardial cell apoptosis. During the subsequent cardiac repair phase, the gradual release of Mg2+ from MgNPs/GA stimulated angiogenesis and promoted M2 macrophage polarization, thereby reducing the release of inflammatory factors. Conclusion: MgNPs/GA acting on multiple cell types is an integrated solution for comprehensive attenuation of myocardial ischaemia-reperfusion injury and cardiac function protection.


Assuntos
Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Magnésio , Ácido Gálico/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Anti-Inflamatórios/uso terapêutico
15.
iScience ; 27(2): 108635, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38292426

RESUMO

The beneficial effects of physical exercise on human cardiorespiratory fitness might be through reduced systemic inflammation, but the mechanism remains a controversy. Recent studies have highlighted the importance of spleen microbiomes in immune regulation. Hence, we conducted a study using a high-fat diet and exercise mouse model to investigate the relationships among different exercise intensities, spleen microbiome composition, and cardiac function. The mice spleen contained a diverse array of microbiota. Different intensities of exercise resulted in varying compositions of the spleen microbiome, Treg cell levels, and mouse heart function. Additionally, the abundance of Lactobacillus johnsonii in the mouse spleen exhibited a positive correlation with Treg cell levels, suggesting that Lactobacillus johnsonii may contribute to the production of Treg cells, potentially explaining the protective role of moderate-intensity exercise on cardiac function. In conclusion, our findings provide evidence that moderate-intensity exercise may promote cardiac function protection by influencing the spleen microbiome composition.

16.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255909

RESUMO

The purpose of this study was to explore the therapeutic effect of the oral administration of pseudo-ginsenoside RT4 (RT4) on ulcerative colitis (UC), and to determine the rate of absorption and distribution of RT4 in mice with UC. Balb/c mice were induced using dextran sulfate sodium salts (DSS) to establish the UC model, and 10, 20, or 40 mg/kg of RT4 was subsequently administered via gavage. The clinical symptoms, inflammatory response, intestinal barrier, content of total short-chain fatty acids (SCFAs), and gut microbiota were investigated. Caco-2 cells were induced to establish the epithelial barrier damage model using LPS, and an intervention was performed using 4, 8, and 16 µg/mL of RT4. The inflammatory factors, transient electrical resistance (TEER), and tight-junction protein expression were determined. Finally, pharmacokinetic and tissue distribution studies following the intragastric administration of RT4 in UC mice were performed. According to the results in mice, RT4 decreased the disease activity index (DAI) score, restored the colon length, reduced the levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß), and boosted the levels of immunosuppressive cytokine IL-10, increased the content of SCFAs, improved the colonic histopathology, maintained the ultrastructure of colonic mucosal epithelial cells, and corrected disturbances in the intestinal microbiota. Based on the results in caco-2 cells, RT4 reduced the levels of TNF-α, IL-6, and IL-1ß; protected integrity of monolayers; and increased tight-junction protein expression. Additionally, the main pharmacokinetic parameters (Cmax, Tmax, t1/2, Vd, CL, AUC) were obtained, the absolute bioavailability was calculated as 18.90% ± 2.70%, and the main distribution tissues were the small intestine and colon. In conclusion, RT4, with the features of slow elimination and directional distribution, could alleviate UC by inhibiting inflammatory factors, repairing the intestinal mucosal barrier, boosting the dominant intestinal microflora, and modulating the expression of SCFAs.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Ginsenosídeos , Animais , Camundongos , Humanos , Distribuição Tecidual , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Células CACO-2 , Interleucina-6 , Fator de Necrose Tumoral alfa , Citocinas , Interleucina-1beta , Camundongos Endogâmicos BALB C
17.
Int J Biol Sci ; 20(1): 29-46, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164183

RESUMO

Background: Thoracic aortic dissection (TAD) is one of the cardiovascular diseases with high incidence and fatality rates. Vascular smooth muscle cells (VSMCs) play a vital role in TAD formation. Recent studies have shown that extracellular S100A4 may participate in VSMCs regulation. However, the mechanism(s) underlying this association remains elusive. Consequently, this study investigated the role of S100A4 in VSMCs regulation and TAD formation. Methods: Hub genes were screened based on the transcriptome data of aortic dissection in the Gene Expression Synthesis database. Three-week-old male S100A4 overexpression (AAV9- S100A4 OE) and S100A4 knockdown (AAV9- S100A4 KD) mice were exposed to ß-aminopropionitrile monofumarate through drinking water for 28 days to create the murine TAD model. Results: S100A4 was observed to be the hub gene in aortic dissection. Furthermore, overexpression of S100A4 was exacerbated, whereas inhibition of S100A4 significantly improved TAD progression. In the TAD model, the S100A4 was observed to aggravate the phenotypic transition of VSMCs. Additionally, lysyl oxidase (LOX) was an important target of S100A4 in TAD. S100A4 interacted with LOX in VSMCs, reduced mature LOX (m-LOX), and decreased elastic fiber deposition, thereby disrupting extracellular matrix homeostasis and promoting TAD development. Elastic fiber deposition in human aortic tissues was negatively correlated with the expression of S100A4, which in turn, was negatively correlated with LOX. Conclusions: Our data showed that S100A4 modulates TADprogression, induces lysosomal degradation of m-LOX, and reduces the deposition of elastic fibers by interacting with LOX, thus contributing to the disruption of extracellular matrix homeostasis in TAD. These findings suggest that S100A4 may be a new target for the prevention and treatment of TAD.


Assuntos
Dissecção Aórtica , Dissecção da Aorta Torácica , Masculino , Humanos , Camundongos , Animais , Dissecção Aórtica/genética , Aorta , Matriz Extracelular , Proteína A4 de Ligação a Cálcio da Família S100/genética
18.
Phytomedicine ; 124: 155292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190784

RESUMO

BACKGROUND: (-)-Syringaresinol (SYR), a natural lignan with significant antioxidant and anti-inflammatory activities, possesses various pharmacological benefits including cardio-protective, antibacterial, anticancer, and anti-aging effects. It was shown that the effectiveness of (+)-syringaresinol diglucoside on the ulcerative colitis (UC) was attributed to the active metabolite (+)-syringaresinol (the enantiomor of SYR). However, the efficacy of SYR against UC remains unclear, and the associated molecular mechanism has not been revealed yet PURPOSE: This study aimed to assess the protective effect of SYR in UC and its underlying mechanism STUDY DESIGN AND METHODS: We examined SYR's protective impact on the intestinal epithelial barrier and its ability to inhibit inflammatory responses in both a lipopolysaccharide (LPS)-induced Caco-2 cell model and a dextran sodium sulfate (DSS)-induced UC mouse model. We also explored the potential signaling pathways regulated by SYR using transcriptome analysis and western blot assay RESULTS: In Caco-2 cells, SYR significantly increased trans-epithelial electrical resistance, reduced tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interferon-γ (IFN-γ), and cyclooxygenase-2 (COX-2) levels, and enhanced cellular tight junction protein expression and distribution. In mice with UC, oral treatment with SYR (10, 20, 40 mg·kg-1) dose-dependently increased body weight, colon length, and expression of tight junction proteins, decreased disease activity index score, spleen coefficient, cytokine serum levels, bacterial translocation, and intestinal damage, and also preserved the ultrastructure of colonic mucosal cells. Transcriptomics indicated that the anti-UC effect of SYR is mediated via the PI3K-Akt/MAPK/Wnt signaling pathway. CONCLUSION: In summary, SYR effectively mitigated the development of UC by enhancing the intestinal epithelial barrier function and attenuating the inflammatory response. The plant-derived product SYR might be a potentially effective therapeutical agent against UC.


Assuntos
Colite Ulcerativa , Colite , Furanos , Lignanas , Humanos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Células CACO-2 , Fosfatidilinositol 3-Quinases/metabolismo , Colo/patologia , Lignanas/farmacologia , Lignanas/uso terapêutico , Mucosa Intestinal/metabolismo , Modelos Animais de Doenças , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente
19.
Dalton Trans ; 53(2): 601-611, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38063670

RESUMO

To tune the complexation and solvent extraction performance of the ligands with a 1,10-phenanthroline core for trivalent actinides (An3+) and lanthanides (Ln3+), we synthesized two new asymmetric tetradentate ligands with pyrazole and amide groups, i.e., L1 (N,N-diethyl-9-(5-ethyl-1H-pyrazol-3-yl)-1,10-phenanthroline-2-carboxamide) and its analogue L2 with longer alkyl chains (N,N-dihexyl). The complexation of the ligands with Ln3+ was confirmed by 1H NMR titration and X-ray crystallography, and stability constants were measured in methanol by spectrophotometric titration. The asymmetric ligands exhibited an improved performance in terms of selective solvent extraction of Am3+ over Eu3+ in strongly acidic solutions compared to their symmetric analogues. The improved selectivity of the asymmetric ligands was interpreted theoretically by density functional theory simulations. This study implies that combining different functional groups to construct asymmetric ligands may be an efficient way to tune ligand performance with regard to An3+ separation from Ln3+.

20.
J Am Med Dir Assoc ; 25(3): 431-438.e15, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37660722

RESUMO

OBJECTIVES: Physical activity (PA) and telomeres both contribute to healthy aging and longevity. To investigate the optimal dosage of various PA for longevity and the role of telomere length in PA and mortality. DESIGN: Prospective cohort study. SETTING AND PARTICIPANTS: A total of 333,865 adults (mean age of 56 years) from the UK Biobank were analyzed. METHODS: Walking, moderate PA (MPA), and vigorous PA (VPA) were self-reported via questionnaire, and leukocyte telomere length (LTL) was measured. Cox proportional hazards regression was used to predict all-cause mortality risk. A flexible parametric Royston-Parmar survival model was used to estimate life expectancy. RESULTS: During a median follow-up of 13.8 years, 19,789 deaths were recorded. Compared with the no-walking group, 90 to 720 minutes/week of walking was similarly associated with 27% to 31% of lower mortality and about 6 years of additional life expectancy. We observed nearly major benefits for mortality and life expectancy among those meeting the PA guidelines [151-300 minutes/wk for MPA: hazard ratio (HR) 0.80, 95% CI 0.75-0.85, 3.40-3.42 additional life years; 76-150 minutes/wk for VPA: HR 0.78, 95% CI 0.75-0.82, 2.61 years (2.33-2.89)] vs the no-PA group. Similar benefits were also observed at 76-150 and 301-375 minutes/wk of MPA (18%-19% lower mortality, 3.20-3.42 gained years) or 151-300 minutes/wk of VPA (20%-26% lower mortality, 2.41-2.61 gained years). The associations between MPA, VPA, and mortality risk were slightly mediated by LTL (≈1% mediation proportion, both P < .001). CONCLUSIONS AND IMPLICATIONS: Our study suggests a more flexible range of PA than the current PA guidelines, which could gain similar benefits and is easier to achieve: 90 to 720 minutes/wk of walking, 75 to 375 minutes/wk of MPA, and 75 to 300 minutes/wk of VPA. Telomeres might be a potential mechanism by which PA promotes longevity.


Assuntos
Exercício Físico , Expectativa de Vida , Adulto , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Longevidade , Telômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...